GTSAM  4.0.2
C++ library for smoothing and mapping (SAM)
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Protected Attributes | List of all members
gtsam::SmartFactorBase< CAMERA > Class Template Referenceabstract

Base class for smart factors. This base class has no internal point, but it has a measurement, noise model and an optional sensor pose. This class mainly computes the derivatives and returns them as a variety of factors. The methods take a CameraSet<CAMERA> argument and the value of a point, which is kept in the derived class. More...

#include <SmartFactorBase.h>

Inheritance diagram for gtsam::SmartFactorBase< CAMERA >:
Inheritance graph
[legend]
Collaboration diagram for gtsam::SmartFactorBase< CAMERA >:
Collaboration graph
[legend]

Public Types

typedef Eigen::Matrix< double, ZDim, DimMatrixZD
 
typedef std::vector< MatrixZD, Eigen::aligned_allocator< MatrixZD > > FBlocks
 
typedef CameraSet< CAMERA > Cameras
 The CameraSet data structure is used to refer to a set of cameras.
 
typedef KeyVector::iterator iterator
 Iterator over keys.
 
typedef KeyVector::const_iterator const_iterator
 Const iterator over keys.
 

Public Member Functions

 SmartFactorBase ()
 Default Constructor, for serialization.
 
 SmartFactorBase (const SharedNoiseModel &sharedNoiseModel, std::optional< Pose3 > body_P_sensor={}, size_t expectedNumberCameras=10)
 Construct with given noise model and optional arguments.
 
 ~SmartFactorBase () override
 Virtual destructor, subclasses from NonlinearFactor.
 
void add (const Z &measured, const Key &key)
 
void add (const ZVector &measurements, const KeyVector &cameraKeys)
 Add a bunch of measurements, together with the camera keys.
 
template<class SFM_TRACK >
void add (const SFM_TRACK &trackToAdd)
 
size_t dim () const override
 Return the dimension (number of rows!) of the factor.
 
const ZVector & measured () const
 Return the 2D measurements (ZDim, in general).
 
virtual Cameras cameras (const Values &values) const
 Collect all cameras: important that in key order.
 
void print (const std::string &s="", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const override
 
bool equals (const NonlinearFactor &p, double tol=1e-9) const override
 equals
 
template<class POINT >
Vector unwhitenedError (const Cameras &cameras, const POINT &point, typename Cameras::FBlocks *Fs=nullptr, Matrix *E=nullptr) const
 
template<class POINT , class ... OptArgs, typename = std::enable_if_t<sizeof...(OptArgs)!=0>>
Vector unwhitenedError (const Cameras &cameras, const POINT &point, OptArgs &&... optArgs) const
 
virtual void correctForMissingMeasurements (const Cameras &cameras, Vector &ue, typename Cameras::FBlocks *Fs=nullptr, Matrix *E=nullptr) const
 
template<class ... OptArgs>
void correctForMissingMeasurements (const Cameras &cameras, Vector &ue, OptArgs &&... optArgs) const
 
template<class POINT >
Vector whitenedError (const Cameras &cameras, const POINT &point) const
 
template<class POINT >
double totalReprojectionError (const Cameras &cameras, const POINT &point) const
 
template<class POINT >
void computeJacobians (FBlocks &Fs, Matrix &E, Vector &b, const Cameras &cameras, const POINT &point) const
 
template<class POINT >
void computeJacobiansSVD (FBlocks &Fs, Matrix &Enull, Vector &b, const Cameras &cameras, const POINT &point) const
 
std::shared_ptr< RegularHessianFactor< Dim > > createHessianFactor (const Cameras &cameras, const Point3 &point, const double lambda=0.0, bool diagonalDamping=false) const
 Linearize to a Hessianfactor.
 
void updateAugmentedHessian (const Cameras &cameras, const Point3 &point, const double lambda, bool diagonalDamping, SymmetricBlockMatrix &augmentedHessian, const KeyVector allKeys) const
 
void whitenJacobians (FBlocks &F, Matrix &E, Vector &b) const
 Whiten the Jacobians computed by computeJacobians using noiseModel_.
 
std::shared_ptr< RegularImplicitSchurFactor< CAMERA > > createRegularImplicitSchurFactor (const Cameras &cameras, const Point3 &point, double lambda=0.0, bool diagonalDamping=false) const
 Return Jacobians as RegularImplicitSchurFactor with raw access.
 
std::shared_ptr< JacobianFactorQ< Dim, ZDim > > createJacobianQFactor (const Cameras &cameras, const Point3 &point, double lambda=0.0, bool diagonalDamping=false) const
 Return Jacobians as JacobianFactorQ.
 
std::shared_ptr< JacobianFactorcreateJacobianSVDFactor (const Cameras &cameras, const Point3 &point, double lambda=0.0) const
 
Pose3 body_P_sensor () const
 
Testable
bool equals (const This &other, double tol=1e-9) const
 check equality
 
virtual void printKeys (const std::string &s="Factor", const KeyFormatter &formatter=DefaultKeyFormatter) const
 print only keys
 
Standard Interface
virtual double error (const Values &c) const
 
double error (const HybridValues &c) const override
 
virtual bool active (const Values &) const
 
virtual std::shared_ptr< GaussianFactorlinearize (const Values &c) const =0
 
virtual shared_ptr clone () const
 
virtual shared_ptr rekey (const std::map< Key, Key > &rekey_mapping) const
 
virtual shared_ptr rekey (const KeyVector &new_keys) const
 
virtual bool sendable () const
 
Standard Interface
bool empty () const
 Whether the factor is empty (involves zero variables).
 
Key front () const
 First key.
 
Key back () const
 Last key.
 
const_iterator find (Key key) const
 find
 
const KeyVectorkeys () const
 Access the factor's involved variable keys.
 
const_iterator begin () const
 
const_iterator end () const
 
size_t size () const
 
Advanced Interface
KeyVectorkeys ()
 
iterator begin ()
 
iterator end ()
 

Static Public Member Functions

static Matrix PointCov (const Matrix &E)
 Computes Point Covariance P from the "point Jacobian" E.
 
static void FillDiagonalF (const FBlocks &Fs, Matrix &F)
 Create BIG block-diagonal matrix F from Fblocks.
 

Public Attributes

GTSAM_MAKE_ALIGNED_OPERATOR_NEW typedef std::shared_ptr< Thisshared_ptr
 shorthand for a smart pointer to a factor.
 

Static Public Attributes

static const int Dim = traits<CAMERA>::dimension
 Camera dimension.
 
static const int ZDim = traits<Z>::dimension
 Measurement dimension.
 

Static Protected Member Functions

Standard Constructors
template<typename CONTAINER >
static Factor FromKeys (const CONTAINER &keys)
 
template<typename ITERATOR >
static Factor FromIterators (ITERATOR first, ITERATOR last)
 

Protected Attributes

SharedIsotropic noiseModel_
 
ZVector measured_
 
std::optional< Pose3body_P_sensor_
 Pose of the camera in the body frame.
 
FBlocks Fs
 
KeyVector keys_
 The keys involved in this factor.
 

Detailed Description

template<class CAMERA>
class gtsam::SmartFactorBase< CAMERA >

Base class for smart factors. This base class has no internal point, but it has a measurement, noise model and an optional sensor pose. This class mainly computes the derivatives and returns them as a variety of factors. The methods take a CameraSet<CAMERA> argument and the value of a point, which is kept in the derived class.

Template Parameters
CAMERAshould behave like a PinholeCamera.

Member Function Documentation

◆ active()

virtual bool gtsam::NonlinearFactor::active ( const Values ) const
inlinevirtualinherited

Checks whether a factor should be used based on a set of values. This is primarily used to implement inequality constraints that require a variable active set. For all others, the default implementation returning true solves this problem.

In an inequality/bounding constraint, this active() returns true when the constraint is NOT fulfilled.

Returns
true if the constraint is active

Reimplemented in gtsam::BoundingConstraint2< VALUE1, VALUE2 >, gtsam::AntiFactor, and gtsam::BoundingConstraint1< VALUE >.

◆ add() [1/2]

template<class CAMERA>
void gtsam::SmartFactorBase< CAMERA >::add ( const Z &  measured,
const Key key 
)
inline

Add a new measurement and pose/camera key.

Parameters
measuredis the 2m dimensional projection of a single landmark
keyis the index corresponding to the camera observing the landmark

◆ add() [2/2]

template<class CAMERA>
template<class SFM_TRACK >
void gtsam::SmartFactorBase< CAMERA >::add ( const SFM_TRACK &  trackToAdd)
inline

Add an entire SfM_track (collection of cameras observing a single point). The noise is assumed to be the same for all measurements.

◆ begin() [1/2]

const_iterator gtsam::Factor::begin ( ) const
inlineinherited

Iterator at beginning of involved variable keys

◆ begin() [2/2]

iterator gtsam::Factor::begin ( )
inlineinherited

Iterator at beginning of involved variable keys

◆ clone()

virtual shared_ptr gtsam::NonlinearFactor::clone ( ) const
inlinevirtualinherited

Creates a shared_ptr clone of the factor - needs to be specialized to allow for subclasses

By default, throws exception if subclass does not implement the function.

Reimplemented in gtsam::EssentialMatrixFactor4< CALIBRATION >, gtsam::NonlinearEquality2< T >, gtsam::CombinedImuFactor, gtsam::ImuFactor2, gtsam::EssentialMatrixFactor3, gtsam::NonlinearEquality1< VALUE >, gtsam::GeneralSFMFactor2< CALIBRATION >, gtsam::ImuFactor, gtsam::LinearizedHessianFactor, gtsam::PendulumFactorPk1, gtsam::FunctorizedFactor2< R, T1, T2 >, gtsam::MagFactor3, gtsam::Pose3AttitudeFactor, gtsam::SmartRangeFactor, gtsam::NonlinearEquality< VALUE >, gtsam::AHRSFactor, gtsam::EssentialMatrixFactor2, gtsam::ExpressionFactor< T >, gtsam::ExpressionFactor< BearingRange< A1, A2 > >, gtsam::ExpressionFactor< double >, gtsam::MagFactor2, gtsam::PendulumFactorPk, gtsam::GPSFactor2, gtsam::ProjectionFactorRollingShutter, gtsam::RangeFactorWithTransform< A1, A2, T >, gtsam::LinearContainerFactor, gtsam::LinearizedJacobianFactor, gtsam::Rot3AttitudeFactor, gtsam::MagFactor1, gtsam::GenericProjectionFactor< POSE, LANDMARK, CALIBRATION >, gtsam::DiscreteEulerPoincareHelicopter, gtsam::MultiProjectionFactor< POSE, LANDMARK, CALIBRATION >, gtsam::GeneralSFMFactor< CAMERA, LANDMARK >, gtsam::ProjectionFactorPPP< POSE, LANDMARK, CALIBRATION >, gtsam::TransformBtwRobotsUnaryFactorEM< VALUE >, gtsam::GenericStereoFactor< POSE, LANDMARK >, gtsam::TriangulationFactor< CAMERA >, gtsam::RotateDirectionsFactor, gtsam::PendulumFactor2, gtsam::ReferenceFrameFactor< POINT, TRANSFORM >, gtsam::FunctorizedFactor< R, T >, gtsam::PartialPriorFactor< VALUE >, gtsam::FunctorizedFactor< Vector, ParameterMatrix< M > >, gtsam::FunctorizedFactor< double, BASIS::Parameters >, gtsam::FunctorizedFactor< double, Vector >, gtsam::FunctorizedFactor< T, ParameterMatrix< traits< T >::dimension > >, gtsam::FunctorizedFactor< double, ParameterMatrix< P > >, gtsam::PartialPriorFactor< PoseRTV >, gtsam::MagPoseFactor< POSE >, gtsam::ProjectionFactorPPPC< POSE, LANDMARK, CALIBRATION >, gtsam::TransformBtwRobotsUnaryFactor< VALUE >, gtsam::BetweenFactor< VALUE >, gtsam::EssentialMatrixFactor, gtsam::VelocityConstraint, gtsam::PriorFactor< VALUE >, gtsam::GPSFactor, gtsam::PoseToPointFactor< POSE, POINT >, gtsam::BarometricFactor, gtsam::EssentialMatrixConstraint, gtsam::DummyFactor, gtsam::PoseBetweenFactor< POSE >, gtsam::BearingRangeFactor< A1, A2, B, R >, gtsam::PosePriorFactor< POSE >, gtsam::MagFactor, gtsam::PoseTranslationPrior< POSE >, gtsam::PoseRotationPrior< POSE >, gtsam::FullIMUFactor< POSE >, gtsam::AntiFactor, gtsam::RangeFactor< A1, A2, T >, gtsam::IMUFactor< POSE >, gtsam::RelativeElevationFactor, gtsam::PendulumFactor1, gtsam::Reconstruction, gtsam::RotateFactor, and gtsam::VelocityConstraint3.

◆ computeJacobians()

template<class CAMERA>
template<class POINT >
void gtsam::SmartFactorBase< CAMERA >::computeJacobians ( FBlocks &  Fs,
Matrix &  E,
Vector &  b,
const Cameras cameras,
const POINT &  point 
) const
inline

Compute F, E, and b (called below in both vanilla and SVD versions), where F is a vector of derivatives wrpt the cameras, and E the stacked derivatives with respect to the point. The value of cameras/point are passed as parameters.

◆ computeJacobiansSVD()

template<class CAMERA>
template<class POINT >
void gtsam::SmartFactorBase< CAMERA >::computeJacobiansSVD ( FBlocks &  Fs,
Matrix &  Enull,
Vector &  b,
const Cameras cameras,
const POINT &  point 
) const
inline

SVD version that produces smaller Jacobian matrices by doing an SVD decomposition on E, and returning the left nulkl-space of E. See JacobianFactorSVD for more documentation.

◆ correctForMissingMeasurements() [1/2]

template<class CAMERA>
virtual void gtsam::SmartFactorBase< CAMERA >::correctForMissingMeasurements ( const Cameras cameras,
Vector &  ue,
typename Cameras::FBlocks *  Fs = nullptr,
Matrix *  E = nullptr 
) const
inlinevirtual

This corrects the Jacobians for the case in which some 2D measurement is missing (nan). In practice, this does not do anything in the monocular case, but it is implemented in the stereo version.

Reimplemented in gtsam::SmartStereoProjectionFactor.

◆ correctForMissingMeasurements() [2/2]

template<class CAMERA>
template<class ... OptArgs>
void gtsam::SmartFactorBase< CAMERA >::correctForMissingMeasurements ( const Cameras cameras,
Vector &  ue,
OptArgs &&...  optArgs 
) const
inline

An overload of correctForMissingMeasurements. This allows end users to provide optional arguments that are l-value references to the matrices and vectors that will be used to store the results instead of pointers.

◆ createJacobianSVDFactor()

template<class CAMERA>
std::shared_ptr<JacobianFactor> gtsam::SmartFactorBase< CAMERA >::createJacobianSVDFactor ( const Cameras cameras,
const Point3 point,
double  lambda = 0.0 
) const
inline

Return Jacobians as JacobianFactorSVD. TODO(dellaert): lambda is currently ignored

◆ end() [1/2]

const_iterator gtsam::Factor::end ( ) const
inlineinherited

Iterator at end of involved variable keys

◆ end() [2/2]

iterator gtsam::Factor::end ( )
inlineinherited

Iterator at end of involved variable keys

◆ error()

double gtsam::NonlinearFactor::error ( const HybridValues c) const
overridevirtualinherited

All factor types need to implement an error function. In factor graphs, this is the negative log-likelihood.

Reimplemented from gtsam::Factor.

◆ FromIterators()

template<typename ITERATOR >
static Factor gtsam::Factor::FromIterators ( ITERATOR  first,
ITERATOR  last 
)
inlinestaticprotectedinherited

Construct factor from iterator keys. This is called internally from derived factor static factor methods, as a workaround for not being able to call the protected constructors above.

◆ FromKeys()

template<typename CONTAINER >
static Factor gtsam::Factor::FromKeys ( const CONTAINER &  keys)
inlinestaticprotectedinherited

Construct factor from container of keys. This is called internally from derived factor static factor methods, as a workaround for not being able to call the protected constructors above.

◆ keys()

KeyVector& gtsam::Factor::keys ( )
inlineinherited
Returns
keys involved in this factor

◆ linearize()

virtual std::shared_ptr<GaussianFactor> gtsam::NonlinearFactor::linearize ( const Values c) const
pure virtualinherited

◆ print()

template<class CAMERA>
void gtsam::SmartFactorBase< CAMERA >::print ( const std::string &  s = "",
const KeyFormatter keyFormatter = DefaultKeyFormatter 
) const
inlineoverridevirtual

print

Parameters
soptional string naming the factor
keyFormatteroptional formatter useful for printing Symbols

Reimplemented from gtsam::NonlinearFactor.

Reimplemented in gtsam::SmartProjectionPoseFactorRollingShutter< CAMERA >, gtsam::SmartProjectionRigFactor< CAMERA >, gtsam::SmartProjectionFactor< CAMERA >, and gtsam::SmartProjectionFactor< PinholePose< CALIBRATION > >.

◆ rekey() [1/2]

virtual shared_ptr gtsam::NonlinearFactor::rekey ( const std::map< Key, Key > &  rekey_mapping) const
virtualinherited

Creates a shared_ptr clone of the factor with different keys using a map from old->new keys

Reimplemented in gtsam::LinearContainerFactor.

◆ rekey() [2/2]

virtual shared_ptr gtsam::NonlinearFactor::rekey ( const KeyVector new_keys) const
virtualinherited

Clones a factor and fully replaces its keys

Parameters
new_keysis the full replacement set of keys

Reimplemented in gtsam::LinearContainerFactor.

◆ sendable()

virtual bool gtsam::NonlinearFactor::sendable ( ) const
inlinevirtualinherited

Should the factor be evaluated in the same thread as the caller This is to enable factors that has shared states (like the Python GIL lock)

Reimplemented in gtsam::CustomFactor.

◆ size()

size_t gtsam::Factor::size ( ) const
inlineinherited
Returns
the number of variables involved in this factor

◆ totalReprojectionError()

template<class CAMERA>
template<class POINT >
double gtsam::SmartFactorBase< CAMERA >::totalReprojectionError ( const Cameras cameras,
const POINT &  point 
) const
inline

Calculate the error of the factor. This is the log-likelihood, e.g. \( 0.5(h(x)-z)^2/\sigma^2 \) in case of Gaussian. In this class, we take the raw prediction error \( h(x)-z \), ask the noise model to transform it to \( (h(x)-z)^2/\sigma^2 \), and then multiply by 0.5. Will be used in "error(Values)" function required by NonlinearFactor base class

◆ unwhitenedError() [1/2]

template<class CAMERA>
template<class POINT >
Vector gtsam::SmartFactorBase< CAMERA >::unwhitenedError ( const Cameras cameras,
const POINT &  point,
typename Cameras::FBlocks *  Fs = nullptr,
Matrix *  E = nullptr 
) const
inline

Compute reprojection errors [h(x)-z] = [cameras.project(p)-z] and derivatives. This is the error before the noise model is applied. The templated version described above must finally get resolved to this function.

◆ unwhitenedError() [2/2]

template<class CAMERA>
template<class POINT , class ... OptArgs, typename = std::enable_if_t<sizeof...(OptArgs)!=0>>
Vector gtsam::SmartFactorBase< CAMERA >::unwhitenedError ( const Cameras cameras,
const POINT &  point,
OptArgs &&...  optArgs 
) const
inline

An overload of unwhitenedError. This allows end users to provide optional arguments that are l-value references to the matrices and vectors that will be used to store the results instead of pointers.

◆ updateAugmentedHessian()

template<class CAMERA>
void gtsam::SmartFactorBase< CAMERA >::updateAugmentedHessian ( const Cameras cameras,
const Point3 point,
const double  lambda,
bool  diagonalDamping,
SymmetricBlockMatrix augmentedHessian,
const KeyVector  allKeys 
) const
inline

Add the contribution of the smart factor to a pre-allocated Hessian, using sparse linear algebra. More efficient than the creation of the Hessian without preallocation of the SymmetricBlockMatrix

◆ whitenedError()

template<class CAMERA>
template<class POINT >
Vector gtsam::SmartFactorBase< CAMERA >::whitenedError ( const Cameras cameras,
const POINT &  point 
) const
inline

Calculate vector of re-projection errors [h(x)-z] = [cameras.project(p) - z], with the noise model applied.

Member Data Documentation

◆ measured_

template<class CAMERA>
ZVector gtsam::SmartFactorBase< CAMERA >::measured_
protected

Measurements for each of the m views. We keep a copy of the measurements for I/O and computing the error. The order is kept the same as the keys that we use to create the factor.

◆ noiseModel_

template<class CAMERA>
SharedIsotropic gtsam::SmartFactorBase< CAMERA >::noiseModel_
protected

As of Feb 22, 2015, the noise model is the same for all measurements and is isotropic. This allows for moving most calculations of Schur complement etc. to be easily moved to CameraSet, and also agrees pragmatically with what is normally done.


The documentation for this class was generated from the following file: